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Abstract: The paper is focused TPO – regulator (TPO – Time Pseudo Optimization) with classical 

MASV (Method Aggregate State Variables) method.  Regulator uses dynamical parameters T, D and 

optimization element, which calculates so called better T, D in every time t. Regulation will be 

finished when error vector e is small. 
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1 Introduction 

 Classical formulation of the MASV method 

does not solve the control in the finite time and 

construction algorithm uses the control in the 

infinite time. Time optimization cannot use this 

formulation. There are not dynamical 

parameters T, D. 

In the paper we formulate TPO - regulator 

(TPO – Time Pseudo Optimization) with finite 

model and dynamical parameters T, D. 

 

2 Mathematical model of control 

system 

Let a mathematical model of the nominal 

nonlinear subsystem be considered 
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where   

x  - the vector of the state variables,   

u  - the vector of the control variables,  



  

 f - continuous vector functions,   

G - the matrix of the continuous functions  gi,j ,  

n - the number of the state variables (the order       

of the nonlinear subsystem),   

nj - the partial order,   

m - the number of the control variables,  

T - the transpose symbol,  

dim - the dimension of a vector or  

         the order of a  matrix. 

The condition of controllability of the 

nominal nonlinear subsystem (1) must hold 

[Zítek & Víteček 1999] 

   mt ,rank xG  (3) 

It is supposed that  i = 1, 2,…, n; j = 1, 2,…, 

m  and strictly not distinguished between a 

subsystem (system) and a model in the entire the 

following text. 

3  Control algorithms design – 

MASV method  

The task of the optimal tracking control 

design is the determination of the feedback 

control 
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for the controllable nominal standard nonlinear 

subsystem (1), which for a given state trajectory  

{xw(t)} ensures its tracking by a real state 

trajectory {x(t)} so that the value of the 

quadratic objective functional 
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is minimal,  

where   

e - the error vector,   

D - the constant nonnegative aggregation matrix 

 [dim D = (m,n), rank (DG) = m],  

T - the diagonal matrix of positive time 

constants  Tj  of the order m, i.e. 

 

  mTTT ,,,diag 21 T  (8) 

By the method of the aggregation of the 

state variables, it is possible to obtain the 

optimal feedback control (Zítek & Víteček 

1999) 
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which causes the aggregated optimal closed-

loop control system 

   0
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and minimal value of the quadratic objective 

functional (6) 
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If the elements  dji  of the aggregation 

matrix  D  will be chosen in accordance with the 

formulas 
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then the characteristic polynomial of the 

aggregated optimal closed-loop control system 

(10) will be written in the form 
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where   

s  - the complex variable in the Laplace 

transform,  

Nj - the characteristic polynomial of the j-th 

autonomous control subsystem of the partial 

order  nj. 

It is obvious that in this case the optimal 

closed-loop control system consists of m  



  

autonomous linear control subsystems whose 

desired dynamic behaviour can be ensured by a 

suitable choice of the time constants  Tj  and 

coefficients  dji  of their characteristic 

polynomials (13), i.e. by a suitable choice of the 

matrix  T  and  D. It is very important that the 

quadratic objective functional (6) has only an 

auxiliary purpose. 

The feedback control (9) demands 

knowledge of the exact mathematical model of 

the nominal nonlinear dynamic subsystem (1) 

The control u is non-robust and is often called 

the equivalent control. It ensures the aggregated 

optimal closed-loop control system (10) from 

which after the completion with the equations 

 jii ri,ee  1
  (14) 

the full optimal closed-loop control system can 

be obtained in the form 

 Aee  , (15) 

which has the characteristic polynomial (13). 

VŠB – TUO, Department of Automatization 

under the leadership of prof. Ing. A. Víteček  

has been dealing with this problem for a long 

time. There were lot of papers created. [5], [6], 

[7], [8], [9], [10], [11], [12], [13]. 

 

4 The regulator of time pseudo 

optimization – TPO regulator 

Solution of time optimization with the help 

of mathematical means is a very demanding 

problem. You can find the formulation of these 

problems in the area of MASV method in 

articles [1], [2], [3]. 

In the following text we will project the so-

called TPO – regulator, which will be realized 

from the point of view of time optimization 

approximate solution of the problem. 

The regulator is demonstrated on fig.1. 

 

 

 

 

 

 
Fig.1 – TPO regulator with MASV method 

 

 

Optimization element for T,D – finding 

the most fitting T,D for given time t according 

to given criterion.   

As criterion of optimality for finding (T(t), 

D(t)) we can use 

          )()(),( ttI TT
TDeDeDT           (16) 

Control system – finding the value of 

controlled u(t) with the use of MASV method. 

Controlled system – finding the value of 

the trajectory in time t. 

 

5 Remarks to TPO – regulator 

 Why time? We want to find the 

shortest time tf, so that the error x 

from trajectory xw was small. 

 Why pseudo optimization? At least 

for two reasons: 

o we are not able to find optimal 

T,D 
o we are searching for control 

solution, that ends in case that we 

are near trajectory xw 

 Where can be TPO - regulator 

used? Certainly everywhere where the 

MASV method was used. We know 

about elementary method how to build 

optimization element for each 

problem. 

 What is the contribution of TPO – 

regulator? Speedup of procuration of 

monitored trajectory. 



  

6 The problems that are related 

with TPO - regulator 

 It is very important to solve following 

problems for the given system for setting the 

TPO – regulator: 

 

 Finding the domain of convergency for 

T,D 

 Finding nearly the best procedure for 

calculation of T,D 

 Finding right norms for approximation of 

error 

 

Basic variations of these problems are 

solved. In following articles we describe these 

problems in detail. 

Conclusions 

The regulator formulated in this way is a 

new contribution in the area of MASV method 

theory. In the following articles we will deal 

with problems mentioned above and with 

modelling of a regulator in PC program 

MATLAB, in concrete applications. 
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